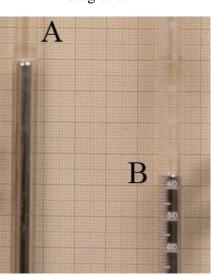
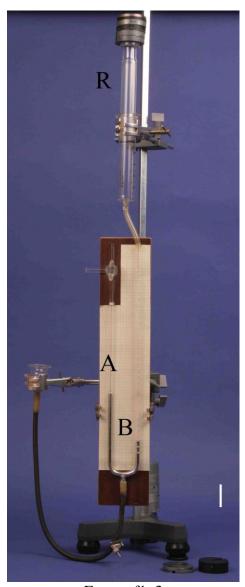
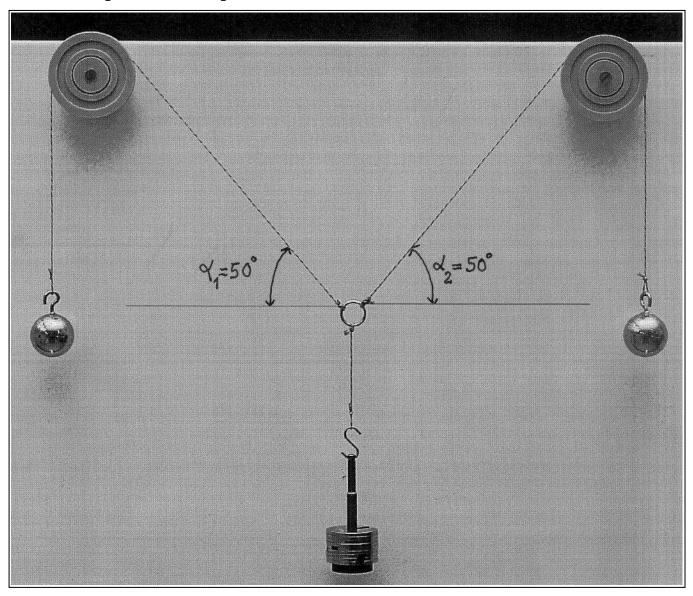

PROBLEMAS VISUALES DE FÍSICAS


PVF16-1*.MANOMETROS


Fotografía 1


Fotografía 2

Fotografía 2(ampliación)


Fotografía 3

Fotografía 3(ampliación)

En las tres fotografías aparece el mismo manómetro de mercurio, que consiste en un tubo de vidrio que contiene mercurio. La rama de la izquierda A se conecta al ambiente y la rama de la derecha B a un recipiente R cerrado que contiene un gas.
Cuando se hicieron estas fotografías la presión atmosférica era 0,920 atmósferas.
a) Calcular la presión del gas del recipiente R, expresada en atmósferas, en las tres fotografías.
b) Si en la fotografía 2 en lugar de mercurio se utilizase agua ¿Cuál sería la diferencia de alturas entre las dos ramas A y B del manómetro?
c) Imagine que la fotografía 3 se hubiese hecho conectando la rama A al recipiente R y la rama B a la atmósfera ¿Cuál sería la presión del gas del recipiente?
Datos: densidad del agua 1000 kg/m³, densidad del mercurio 13600 kg/m³.
1atm=101325Pa

PVF16-2. Equilibrio entre pesos **

En la fotografía se observa que tres pesos se encuentran en equilibrio Las bolas de hierro son iguales y cada una tiene una masa de 67,7 gramos.

- a) Calcula el peso de cada bola de hierro
- b) Determina el peso y la masa del conjunto formado por el portapesas el gancho y las pesas.

Ahora se modifica el sistema de la siguiente manera: La bola de hierro de la derecha se sustituye por otra que tiene 20 gramos más de masa La argolla se desplaza y el ángulo α_1 es β y el α_2 es γ .

- c) Calcula los ángulos β y γ.
- d) Si en la fotografía se sustituyen las dos bolas de hierro por otras dos iguales pero de masa cada una 87,7 gramos ¿Cuánto valdrían los ángulos α_1 y α_2 ?
- e) Si el ángulo entre las cuerdas fuese de 140° ¿cuál sería la masa de dos bolas de hierro colgadas de la misma manera que en la fotografía?

PVF16-3***. Curva de Lissajous

Fotografía 1

La curva que aparece en la pantalla es una elipse y recibe el nombre de curva o figura de Lissajous. Se obtiene a partir de las ecuaciones siguientes:

$$x = A_x sen(\omega t + \varphi)$$
 ; $y = A_y sen(\omega t)$

- a) Obtenga la ecuación de la elipse, para ello despeje $sen(\omega t)$ en la segunda ecuación y llévelo a la primera.
- b) En la ecuación de la elipse sustituya las coordenadas del punto A y opere.
- c) En la ecuación de la elipse sustituya las coordenadas del punto B y opere
- d) En la ecuación de la elipse sustituya las coordenadas del punto C y opere.
- e) Como resultado de los tres apartados anteriores debe obtener los valores de A_X, A_Y y φ.
- f) Sustituya esos valores en las ecuaciones del enunciado y con ω = 10 s⁻¹, dibuje la curva de Lissajous.

Nota. El apartado f de este problema debe hacerse con una hoja de cálculo.