
Ley de Snell. Índice de refracción. SOLUCIÓN

TABLA DE DATOS

Ángulo \hat{i}	Seno î	Ángulo \hat{r}	Seno \hat{r}
0	0	0	0
5	0,087	3	0,052
10	0,174	7	0,122
15	0,259	10	0,174
20	0,342	13	0,225
25	0,422	16,5	0,284
30	0,5	19	0,325
35	0,573	22	0,374
40	0,643	26	0,438
45	0,707	29	0,485
50	0,766	30,5	0,507
55	0,819	33	0,544
60	0,866	35,5	0,58
65	0,906	37,5	0,608
70	0,939	39	0,629

CÁLCULOS GRÁFICOS

En una hoja de cálculo, se hará la gráfica con el sen \hat{i} , en el eje Y, frente a sen \hat{r} en el de las X. La gráfica corresponde a una recta, con lo cual se demuestra que la relación sen \hat{i} /sen \hat{r} es constante. La pendiente será según se ha dicho el índice de refracción del vidrio de la lente empleada.

Índice de refracción del vidrio de la lente = 1,49